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Abstract 

In this paper, we  report  our experiences and  findings  on  the  design of a fault-tolerant bus architecture 

comprised of two  COTS  buses, the IEEE  1394  and the 12C. This fault-tolerant bus is the backbone  system 

bus for the avionics  architecture of the X2000 program  at the Jet  Propulsion Laboratory. COTS  buses are 

attractive because of the availability of low  cost  commercial  products.  However, they are not specifically 

designed for highly reliable applications such as long-life  deep-space missions. The  X2000  design  team 

has  devised a multi-level fault tolerance approach  to  compensate for this shortcoming of COTS buses. 

First, the approach  enhances  the  fault tolerance capabilities of the  IEEE  1394  and 12C buses by adding a 

layer of fault handling  hardware  and software. Second, algorithms are  developed to  enable the IEEE 

1394  and the 12C buses assist each other to  isolate  and  recovery  from faults. Third,  the  set of IEEE  1394 

and 12C buses is duplicated to  further  enhance  system reliability. The X2000 design team  has  paid special 

attention to guarantee  that  all  fault tolerance provisions will not cause the bus  design to  deviate  from the 

commercial standard specifications.  Otherwise, the economic attractiveness of using  COTS will be 

diminished. The  hardware  and  software  design of the  X2000 fault-tolerant bus are being  implemented 

and flight hardware will be delivered to the ST4 and  Europa  Orbiter missions. 
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1 Introduction 

In recent years, commercial-off-the-shelf (COTS)  products  have  found many applications in 

space exploration. The  attractiveness of COTS  is that low  cost  hardware  and software products are 

widely available in the  commercial market. By using  COTS  through out the system, we  expect to 

significantly reduce  both  the  development cost as well as  the  recurring cost of the system. On  the  other 

hand,  COTS are not specifically developed for highly reliable  applications  such as long-life deep-space 

missions. The real challenge  is  to  deliver  a low-cost, highly reliable  and  long-term  survivable  system 

based on COTS that are not developed with high-reliability in mind. In this paper, we report our 

experience of using  COTS  buses  to  implement  a fault-tolerant avionics system  for  the  Advanced 

Spacecraft  System  Development  Program (also known as  X2000) at the Jet Propulsion  Laboratory.  The 

X2000 avionics system  design  emphasizes  on architectural flexibility and scalability, so that it can be 

reused for multi-missions in order  to  reduce the cost of space  exploration [I]. The  advanced  avionics 

technologies that enable  the  X2000  program are being  developed at the  newly established Center  for 

Integrated Space  Microsystems,  (CISM),  a  Center of Excellence  at NASA’s Jet Propulsion  Laboratory 

[2].  The main focus of CISM  is the development of highly integrated, reliable, and  capable  micro- 

avionics  systems  for  deep  space,  long-term survivable, autonomous robotic missions [3][4]. In addition, 

the  X2000  Program  is participating in a software architecture development  effort called the Mission  Data 

System architecture (MDS),  which brings within a  common  framework  the software for both  on-board 

avionics  as well as  on-ground  operations. 

The X2000 architecture is  a distributed, symmetric  system of multiple computing  nodes  and 

device  drivers that share a  common  redundant  bus  architecture.  Most notably, all interfaces used in this 

distributed architecture are  based  on COTS.  That is,  the local computer  bus is the Peripheral Component 

Interface  (PCI)  bus;  the  “system”  bus is the IEEE  1394  high-speed  bus;  and the engineering  bus  is  the 12C 

bus (see Figure 1). In the following  sections,  we first outline a  methodology of applying COTS  for highly 

reliable system. Based  on  this  methodology,  we  describe  the  current baseline for the X2000  First 
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Delivery  avionics  system  architecture.  This  is  followed by how the  X2000  Program  is  using  COTS  to 

implement  a  fault-tolerant bus for  a  scalable and distributed  system. 

2 A Methodology of Applying COTS for Highly  Reliable  System 

JPL has  a long history of successfully applying  fault protection techniques in space  exploration. 

One of the most important  techniques  used by JPL,  in  design of space  vehicle  fault protection, is  fault 

containment.  Traditionally,  a  spacecraft is divided  into  fault  containment  regions.  Rigorous  design  effort 

is used to  ensure  no  effects of a  fault within a  containment  region will propagate  to  the other regions. 

Furthermore,  JPL has a policy of single  fault  tolerance in most of the  spacecraft  design.  This policy 

reqiures  dual  redundancy of fault  containment  regions. 

While  these  techniques  have been very successful  in  the  past, they may not be easily applied in a 

COTS  environment. The reason is  that COTS  are not developed with the  same  level of rigorous fault 

tolerance in mind.  Hence,  there  are  many  fundamental  fault  tolerance  weakness in COTS. For examples, 

the  popular VME bus does not even  have parity bit to check  the  data  and  address [ 113. Another  example 

is  the EEE 1394 bus  (cable  implementation)  adopts  a  tree topology in which  a  single  node  or  link  failure 

will partition the  bus.  These  fundamental weakness will hinder  rigorous  enforcement of fault 

containment.  Worse yet, it is  almost  impossible  to make modifications to COTS in general.  There  are 

two  reasons.  First, the suppliers of COTS  products  have  no interest to  change  their  design,  add any 

overhead,  or  sacrifice their performance  for  a  narrow market of high reliability  applications.  Second, any 

modification will render the COTS incompatible with commercial  test  equipment or software,  and 

therefore  diminish  the  economic  benefits of COTS  drastically.  Therefore, it is  obvious that fault  tolerance 

cannot easily be achieved by a single  layer of fault  containment  regions  that  contains  COTS. 

The COTS-based bus architecture of the  X2000  has  employed  a multi-level fault protection 

methodology to  achieve high reliability. The description of each  fault  protection level in the methodology 

is given as  follows: 
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Level I :  Native  Fault  Containment - most of COTS  bus  standards  have  some  limited  fault detection 

capabilities.  These  capabilities  should  be  exploited  as  the  first  line of defense. 

Level 2: Enhanced  Fault  Containment - addition  layer of hardware  or  software can be used  to  enhance 

the  fault  detection,  isolation,  and  recovery  capabilities of the  native  fault  containment  region.  Examples 

are  watchdog  timer or additional  layer of error  checking  code. It is  important to ensure that the  added 

fault  tolerance  mechanisms will not  affect  the  basic  COTS  functions. This level is  also  the most 

convenient  level to implement  provisions  for  fault  injections. 

Level 3: Fault Protection by Component  Level Design-Diuersity - many COTS have 

fundamental  fault tolerance  weakness that cannot simply be removed  by enhancing 

the native  fault protection mechanisms.  These  weakness  usually  are  related  to single 

points of failures. One example is the tree topology of the IEEE 1394 bus. Once the 

bus is partitioned by a failed node,  no watchdog timer  or extra layer of protocol can 

reconnect the  bus. Similar  examples  include buses  using  other point-to-point 

topologies. In order  to  compensate  for such fundamental weaknesses, complementary  types of buses 

may be used  to  implement  this level of fault protection In particular, the 12C bus, which has  a  multi-drop 

bus  topology,  is used in the  X2000  architecture  to  complement  the EEE 1394 fault  isolation  and 

recovery. 

Another  example of design-diversity  to  compensate  for  COTS reliability in X2000 is the  use of 

flash memory for the  Non-Volatile  Memory. The flash memory has  the  density  required by X2000, but it 

has been observed that a  single high energy  particle can corrupt  an  entire  block in the  flash  memory. To 

handle  such  failure  mode with error  correcting  codes  alone may not meet the reliability requirement. 

Therefore, in order  to  compensate  for  this  weakness,  a  more  robust but much lower  density GMRAM or 

FeRAM is used to  store  critical state data in stead of the  flash  memory. 
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Level 4: Fault Protection by System Level Redundancy - the Level  3  fault  containment  regions will be 

replicated for system level fault  containment. The redundant  fault  containment  regions  can  be  either in 

ready or dormant  states,  depending  on  the  recovery  time  and other system  requirments. If they are in 

ready state, voting or comparison of outputs  among the regions will provide one more level of fault 

detection. In either  case,  the  redundant regions are necessary resources for the fault  recovery process. 

In order  to aid the discussion on  how this methodolgy  is applied to the X2000 bus architecture, an 

overview of the  overall  X2000 avionics system  architecture  and  the  common  failure  modes in space 

applications are given in the  next  section. 

3 Overview of the  X2000  Avionics  Architecture 

The  X2000 avionics architecture is  shown in Figure 1 .  It is comprised of a number of Compact 

PC1 based  “nodes”  connected by a fault-tolerant system bus. A  “node”  can  either  be a flight  computer, a 

non-volatile memory, a subsystem microcontroller, or a simple sensor interface. The fault-tolerant system 

bus  is  comprised of two  COTS buses, the IEEE 1394 [5][6] and 12C [7][8]. Both buses  are multi- 

master and therefore support symmetric  scalable and distributed  architectures. Due to 

the standard electrical  interface  and protocol of the COTS buses, nodes  complying  with the bus interfaces 

can  be  added  to or removed from the system  without  impacting the architecture. The capability of each 

node  can also be  enhanced by adding circuit boards  to the its compact PC1 bus [9]. An overview of the 

spacecraft functions  that are handled by this  architecture features are given in the  following. 

Power  management  and distribution 

Science  data  storage  and  on-board  science  processing 

Telemetry  collection,  management  and  downlink spacecraft navigation and  control 

Autonomous  operations  for  on-board planning, scheduling,  autonomous navigation fault-protection, 

isolation and  recovery,  etc. 
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- Interfacing to  numerous  device drivers: both “dumb”  as well as “intelligent” device  drivers 

The IEEE 1394 Bus 

The IEEE  1394  bus  is the artery of the system  and is capable  to transfer data at 100, 200, or 400 Mbps. 

The  IEEE  1394  bus  has  two  implementations,  cable  and  backplane.  The  cable  implementation has 

adopted  a tree topology  and  the  backplane  implementation  has  a multi-drop bus  topology.  From  the 

topological point of view,  many  designers at JPL are  more interested in the backplane  implementation 

because it resembles  the  1553  bus  used in the Cassini project [13]. Unfortunately, it was  found that 

although the backplane  1394  bus  has  been  implemented by the  aerospace industry [ 121, it is not widely 

supported in the commercial industry and thus will not be  able  to  take the full  advantage of COTS. On 

the other hand, the cable  implementation has been  enjoying  a  much  wider  commercial  support. It has  also 

better performance  than the backplane  implementation [5]. Therefore, the cable  implementation  has  been 

selected for  the X2000. 

The  IEEE  1394  bus  has  two  modes of data  transactions, the isochronous transaction and the 

asynchronous transactions. The isochronous transaction guarantees  on-time delivery but does not require 

acknowledgment,  while the asynchronous transaction requires  acknowledgment but does not guarantee 
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on-time  delivery.  Isochronous  messages  are sent through “channels”  and  a  node can talk on or listen to 

more than one isochronous channel.  Each  isochronous  channel  can  request  and will be allocated a  portion 

of the  bus  bandwidth at the  bus  initialization.  Once  every  125  microseconds (called isochronous  cycle), 

each  isochronous  channel has to arbitrate  but is guaranteed  a  time  slot  to send out its isochronous 

messages. At the  beginning of each  isochronous  cycle,  the  root  sends  out  a  cycle start message and then 

the  isochronous transaction will follow.  After  the  isochronous  transaction is the  asynchronous 

transaction.  Asynchronous  message  is not guaranteed  to  be  sent  within  an  isochronous  cycle.  Therefore, 

a  node may have to wait a  number of isochronous  cycles  before  its  asynchronous massage can be sent out. 

The asynchronous transaction employs  a  fair arbitration scheme, which allows each node  to  send an 

asynchronous message only  once  in  each  fair arbitration cycle.  A  fair  arbitration  cycle can span over 

many isochronous  cycles,  depending  on how much of each  cycle  is  used  up by the  isochronous 

transactions  and how many nodes  are  arbitrating  for  asynchronous  transactions. The end of a  fair 

arbitration  cycle is signified by an Arbitration  Reset  Gap. 

During  the bus startup or reset,  the  bus will go through  an  initialization process in which each 

node will get a  node  ID. In addition,  the  root  (cycle  master),  bus  manager,  and  isochronous  resource 

manager will be elected. The root mainly  is  responsible  for  sending  the  cycle  start message and acts  as  the 

central  arbitrator  for  bus requests. The bus  manager  is  responsible to acquire and maintain the bus 

topology. The isochronous resource  manager is responsible for allocating  bus bandwidth to  isochronous 

nodes.  The  root, bus manager,  and  isochronous  resource  manger  are  not pre-determined, so that any nodes 

can  be  elected to take these  roles  as  long  as they have  the  capability. 

The 12C Bus 

The 12C bus is  a  simple  bus with a  data  rate of 100 kbps. It has  a  more traditional multi-drop 

topology. The 12C bus has two  open-collector  signal  lines:  a  data  line  (SDA)  and  a clock line (SCL). 

Both  signal lines are  normally  pulled  high.  When  a bus transaction  begins,  the SDA line is pulled down 

before  the SCL line. This  constitutes  a  start  condition.  Then  the  address  bits will follow, which is 
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followed by a  readwrite bit and then an acknowledgment  bit. The target node  can  acknowledge the 

receipt of the  data by holding  down the acknowledgment  bit.  After  that,  eight bits of data  can  be sent 

followed by another acknowledgment  bit.  Data  can  be sent repeatedly until  a  stop condition occurs, in 

which the source node signals the  end of transaction by a low-to-high transition on the SDA line while 

holding  the  SCL line high. 

The 12C uses collision avoidance to resolve conflicts  between  master  nodes  contending for the 

bus. If two  or  more  masters try to  send  data  to  the bus, the node  producing  a ‘one’ bit will lose arbitration 

to  the  node  producing  a ‘zero’ bit. The clock signals during arbitration are a  synchronised  combination of 

the  clocks  generated by the  masters  using  the  wired-AND  connection to the SCL line. 

There  are  two applications of the 12C bus in this architecture. In the  system  level, it is used  to 

assist the IEEE 1394  bus  to  isolate  and recover from  faults. In the  subsystem  level,  a  separate 12C bus  is 

used  to collect engineering  data  from  sensors  and  send  commands  to  power  switches  or other equipment. 

Description of Nodes 

There are three basic types of nodes in the system: flight computer,  microcontroller node, and  non- 

volatile memory node. The flight computer  node  is consisted of a  high-performance processor module 

(250 MIPS); 128 Mbytes of local (DRAM)  memory; 128 Mbytes of non-volatile storage  for  boot-up 

software  and other spacecraft state  data; an I/O module  for interfacing with  the E E E  1394  and 12C buses. 

All modules  communicate  with  each other via a  33  MHz PC1 bus. The  microcontroller  node is very 

similar  to the flight computer  node  except the microcontroller has  lower  performance  and less memory to 

conserve  power.  The non-volatile memory  node  has four slices, each  slice  contains 256 Mbytes of flash 

memory  and 1 Mbytes of GMRAM.  The flash memory has much  higher  density  and  is suitable for block 

data  storage.  However, it has limited number of write cycles  and is susceptible to radiation effects.  The 

GMRAM has unlimited write cycles  and is radiation tolerant, but its density is much  lower than flash. In 

X2000, the flash memory is used for  software  codes  and  science  data storage while the GMRAM is used 
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to  store  spacecraft  state  data.  The non-volatile memory slices are controlled by a microcontroller with  an 

IEEE  1394  and 12C bus interfaces. 

4 Design of the COTS Fault-Tolerant Bus 

As it is  mentioned that the COTS fault-tolerant bus is  comprised of the  IEEE  1394  and the 12C 

buses.  A very detail trade study was  conducted at the beginning of the X2000 First Delivery project to 

select the  buses.  At the end, the IEEE  1394  bus was selected because of its  high  data rate (100, 200 or 

400  Mbps),  multi-master capability, moderate  power  consumption,  strong  commercial  support, relatively 

deterministic  latency,  and the availability of commercial  ASIC  cores (referred to  as Intellectual Properties 

or Ips in industry). The advantages of I P S  are that they are reusable  and  can  be integrated in ASICs  and 

fabricated by rad-hard foundry  to  meet radiation requirements. The 12C bus  was selected because of its 

very low  power  consumption,  multi-master  capability, availability of ASIC I P S ,  adequate  data rate (100 

kbps)  for  low  speed  data,  simple  protocol,  and  strong  commercial support. APL has  even  developed  a 

rad-hard 12C based sensor interface chip. 

Although the IEEE  1394  and 12C buses are very attractive in many  aspects, it was  recognized 

early in the  design activity that they are not ideal buses in the classical fault tolerance sense.  The  1394 

bus  has  limited  fault detection features,  and  has  no  explicit  fault  recovery  mechanisms  such  as built-in 

redundancy or  cross strapping. In particular, the 1394  bus has a tree topology that can easily be 

partitioned by  a single node  or link failure.  The 12C bus has almost  no built-in fault detection except an 

acknowledgement bit after every byte transfer. However, they are preferred over the other fault-tolerant 

buses  mainly  because of their low cost and  commercial support. To effectively manage the trade-offs is 

the characteristic of our  approach  to  using  COTS for highly reliable systems;  and  the techniques to 

compensate  for their weakness in fault tolerance is the main  focus of this paper. 
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4.1 Failure  Modes in Data Bus of Spacecraft  Avionics Systems 

At this point, it is worthwhile to identify the most common or critical failure 

modes for data  buses in spacecraft avionics systems, which are  the  targets of the  fault 

tolerance  techniques described in this paper. NASA/JPL always  performs  failure  mode effect 

and criticality analysis (FMECA)  for  every spacecraft design.  Based on those experiences,  the  following 

failure  modes  for  data  buses in avionics systems  have  been identified as either frequently occur  or critical 

to the survival of the  spacecraft. 

1. Invalid Messages: Messages sent across the bus  contains invalid data. 

2. Non-Responsive: An expected  response  to a message  does  not return in time. 

3. Babbling: Communication  among  nodes  is  blocked  or interrupted by uncontrolled data stream. 

4. Collision: More  than  one  node  has the same  identification. 

4.2 Overall  Strategy of COTS Fault-Tolerant Bus Design 

The overall strategy of the  COTS fault-tolerant bus  design applies the methodology  mentioned in 

Section 2 as follows. 

Step I :  Native Fault Containment - The basic fault detection mechanisms of the IEEE  1394  and 12C 

buses  such as CRC  and  acknowledgment are used  to detect invalid messages  or  non-responsive  failure 

modes. 

Step 2: Enhanced Fault Containment - A layer of hardware  and  software  is  added  to  enhance the fault 

detection and  recovery capability of the IEEE  1394  and 12C buses. The extra layer of hardware  is  added 

to the ASIC  containing  the I P S  of the IEEE  1394  and 12C buses. 
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Step 3: Fault  Protection by Design  Diversity - Since the IEEE 1394  bus  adopts  a tree topology, it is very 

difficult to isolate or  recover  from  a failed node  or link because the bus  network  is partitioned and 

communication  between  the sub-trees is cut off. The 12C bus  is  used  to assist the fault isolation and 

recovery by maintaining  the  communication of all nodes. Similarly, if the shared  medium of the 12C bus 

fails, the 1394 bus can  be  used  to  assist the isolation and  recovery of the 12C bus. 

Step 4: Fault Protection by System  Level  Redundancy - The  set of COTS  buses (i.e., IEEE  1394  and 12C 

bus set) is duplicated. If the  primary COTS  bus set has failed  due  to  a single-point-failure between  the 

IEEE  1394  and 12C buses, the backup  COTS  bus set will be activated to assist the fault isolation and 

recovery of the  primary  bus  set. The 12C bus in the backup  COTS  bus set will be activated first  since it is 

much  easier to initialized. Also  the  backup 12C bus  can  provide  communication  among  the  nodes  to 

facilitates the isolation of the single-point-failure in the primary  bus set. If the single-point-failure can  be 

isolated and  removed by bus  reconfiguration, then the primary  bus  set will resume  normal  operation. 

Otherwise, the backup  IEEE  1394  bus will be activated. With  both the backup  IEEE  1394  and 12C buses 

activated, the backup  bus set can  replace  the  primary  bus set. 

In some  circumstances,  only  the  IEEE  1394  bus in the  primary  bus  set  can  be  recovered  and  the 

12C bus  is still affected by the single-point-failure (i.e., due  to  the multi-drop topology of the 12C bus). 

The backup 12C bus  and the primary  IEEE  1394  bus  can  work  together  as  a  single  bus set. 

In rare occasions, the backup 12C bus  also fails while  trying  to assist the  primary  bus  set  to  isolate 

the single-point-failure. The  backup  IEEE  1394 bus  can  be activated to assist the fault isolation and 

recovery of the primary  bus set as well as  handling the workload. 

4.2 Native Fault Containment  Regions 

The  basic  fault detection mechanisms of the IEEE  1394  and 12C buses are highlighted in this 

section. 
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4.2.1 Highlights of the IEEE 1394 Bus Fault  Tolerance  Mechanisms 

The  1394  bus standard has many built-in fault detection mechanisms. A summary of these 

mechanisms  is  given  below.  The details of the acknowledgment  and  response  packet  error  codes  can  be 

found in [5] and [6]. 

1. Data  CRC  and  packet  header  CRC  for  both  isochronous  and  asynchronous transactions 

2. Acknowledgment  packets  include  error code  to indicate if the message  has  been successfully 

delivered in asynchronous transactions 

3. Parity bit to protect acknowledgment packets 

4.  Response Packets include error  code  to indicate if the requested action  has  been  completed 

successfully in asynchronous transactions 

5. Built-in timeout  conditions:  response  timeout  for split transaction, arbitration timeout, 

acknowledgment  timeout  etc. 

A very import  feature in the latest version of the IEEE  1394  standard  (IEEE  1394a [lo]) is  the 

capability to  enable or disable individual ports (a port is the physical interface to a link). With this 

feature,  every  node in the bus  can  disable a link connected  to a failed node  and  enable a backup link to 

bypass the failed node.  This  feature is the basis of the IEEE  1394  bus  recovery in this bus architecture. 

Another  feature in the IEEE  1394 standard is the keep-alive of the physical layer with cable 

power.  This  feature  allows the link layer hardware  and the host processor  to  be  powered off without 

affecting the capability of the physical layer  to  pass  on  messages.  This  is  useful  for insolating a failed 

processor  during fault recovery. 

4.2.2 Highlights of the 12C Bus Fault  Detection  Mechanisms 

The  only fault detection mechanism  is  the  acknowledgment bit that follows  every  data byte. When 

a node  (master)  sends  data  to  another  node  (slave),  and if the slave  node  is  able  to receive the data, it has 
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to  acknowledge  the transaction by pulling  the  data line (SDA)  to  low. If the  slave node fails  to 

acknowledge,  the  master  node will issue  a stop condition to  abort  the  transaction.  Similar situation can 

happen  when  the  master  node  requests  data  from  a  slave  node. If the  master  fails  to  acknowledge  after 

receiving  data  from  the  slave,  the  slave will stop  sending  data.  Subsequently,  the  master  node can issue a 

stop  condition  to  terminate the transaction if  it is still functional. 

4.3 Enhanced  Fault  Containment  Regions 

Several  mechanisms  are  added  to  enhance  the  fault  detection  and  recovery  capability of the IEEE 

1394  and 12C buses.  They  are  discribed in the following. 

4.3.1 Enhanced  Fault  Tolerance  Mechanisms for IEEE  1394  Bus 

Heartbeat  and Polling 

The X2000 architectural  design  enhances  the  fault  detection  capability of the  1394 bus with 

heartbeat  and  polling. Heartbeat is  effective  for  detecting  root  failure  while  polling  can  be used to  detect 

individual  node  failures.  Since the cycle  master  (root) of the  1394 bus always  sends  out an isochronous 

cycle start message  every 125 ps (average), it is  natural to use  the  cycle  start  message as the  heartbeat. All 

other  nodes  on  the bus monitor the interval between cycle start messages. If the  root  node  fails,  other 

nodes on the  bus will detect missing cycle start and  initiate  fault  isolation  process (to be  discussed  in  later 

sections).  However,  cycle start can only  detect  hardware level faults  since it is  automatically  generated by 

the  link  layer.  Therefore,  a  software heartbeat should  be used to  detect  faults in the transaction or 

application  layers. 

Other  failure modes can also be detected by this  method.  For  example,  multiple roots will 

generate  more than one  hardware  heartbeat (i.e., cycle  start) within an  isochronous  cycle. By comparing 

the  actual  heartbeat interval with a  minimum  expected  heartbeat  interval,  the  multiple  heartbeats  can be 

detected.  More  discussions  about  the multiple root  detection  can be found in the  next two sections. 
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Furthermore,  software  heartbeat  is  effective in detecting  babbling  nodes. If the  fault  causing  the 

node to babble  is in software, it is possible  that  the  hardware heartbeat may appear to be valid since  the 

cycle start is automatically  generated by the  link  layer  hardware. On the other  hand,  the  software  fault  is 

likely to affect  the  software  heartbeat.  Therefore,  the  software heartbeat is preferred over  the  hardware 

heartbeat in detecting  babbling  nodes. 

In addition  to  heartbeat,  the root node  can  also send polling messages periodically  to individual 

nodes by asynchronous  transaction.  Since  asynchronous transaction requires  acknowledgment  from  the 

target node, a node  failure  can  be detected by acknowledgment  timeout. 

Isochronous Acknowledgment 

Sometimes,  acknowledgment is desirable for isochronous  transactions,  especially when the 

isochronous transaction  requires on-time and  reliable  delivery.  Therefore, a confirmation  message  type is 

added to the  application  layer, so that the  target  node  can  report any isochronous  transaction  errors  to  the 

source  node. The confirmation message itself can be either an isochronous  or  asynchronous  transaction, 

depending on the  time  criticality.  Furthermore,  the  data  field of the original isochronous  message  contains 

the source node  ID, so the target node  knows  where  to report the isochronous  transaction  errors. If the 

confirmation message  contains an error  code,  the  source  node  can retransmit the  message in isochronous 

or  asynchronous  mode as appropriate. 

Link Layer Fail-Silence 

The root  node of the IEEE 1394 bus  periodically  sends a “fail silence”  message  to  all  nodes; 

every node in the bus has afail silence  timer in the  link  layer  to  monitor  this  message. Upon receiving  the 

message,  each  node will reset its fail silence  timer. If one of the nodes babbles  because of a link layer  or 

application layer  failure,  the fail silence  message will be  blocked  or  corrupted.  This will cause  the fail 

silence  timer in each  node  to  time  out.  Subsequently,  thefail  silence  timer will disable the hardware of its 

own link  layer  and  thus  inhibit  the  node  from  transmitting or receiving messages  (note:  the ability of the 
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physical layer  to pass on  message  is  unaffected).  Eventually,  after a waiting period, the link  layers of all 

nodes including the babbling  node will be disabled and the bus will become quiet again. At this time, 

another timer in the root will “unmute” the root itself and  send a Link-on packet, which is a physical layer 

packet, to individual nodes. Upon receiving the Link-on packet, the physical layer of a node will send a 

signal  to  wake  up its link layer. If a node  causes the bus to fail again while its link layer  is re-enabled, it 

will be identified as the failed node  and will not be  enabled  again. If the root itself is  the  babbling  node, 

other  nodes will detect the unmute  timeout  and  issue  bus reset. 

Watchdog Timers 

The  IEEE  1394  standard  has specified many watchdog timers. Additional watchdog  timers that 

are related to fault detection of the IEEE  1394  bus  have  been identified as follows. 

CPU Watchdog Timer: A  hardware timer to  monitor the health of the host CPU (i.e., the 

microprocessor  or microcontroller). This  watchdog timer is  an  incremental counter and  need  to  be reset 

by the  CPU periodically. If the  CPU  fails to reset this watchdog, an overflow will occur  which  then will 

trigger a local reset. 

Heartbeat Lost Timer  (HLT): Triggered by lost of heartbeat or  CPU. It times out after a 

programmable value is  decremented  to zero. 

Poll Response  Timer (in Root Node): A  software  timer  monitor the response  time of polling 

message on the  1394  bus. 
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4.3.2 Enhanced Fault Tolerance  Mechanisms for 12C Bus 

Protocol  Enhancement 

A  layer of protocol is added  to the 12C bus. This protocol includes a byte  count after the address 

and  two CRC bytes after the data. X2000 design  also utilizes especial  hardware  messages  commands to 

control  critical  functions.  For these messages,  command  is  sent  followed by its  complement  to  provide 

one  more layer of protection. 

Byte  Timeout 

The 12C bus permits a receiving node  (slave  or master) to hold  down  the clock signal (SCL) as a 

means to slow  down the sending  node (master or slave). This  is  to  allow  a  fast  node  to  send  data  to  a 

slow  node.  However, it is possible that a failed receiving node  causes  a stuck-at-low fault on the SCL 

signal, so that the  sending  node may have  to  wait indefinitely. To recover  from this failure  mode,  every 

node has a byte timeout timer to monitor the duration of the SCL signal.  When the byte timeout timer in a 

node  (including the faulty node)  expires, it will disable the circuitry of the  SDA and SCL transmitters. 

After all nodes  have disabled their SDA and SDL transmitters, a recovery  procedure  similar  to that in the 

fail-silence mechanism  (see next) will be  used  to  disable the failed node. 

Fail Silence 

One of the nodes in the 12C is  designated as the controlling  master.  The controlling master 

periodically sends a “fail silence” message to all 12C nodes. All nodes will monitor this message  with an 

f2C bus fail silence timer. Upon receiving the message,  each  node will reset its f2C bus fail silence timer. 

If one of the nodes is babbling so that the fail silence message is blocked or  delayed, the f’C bus fail- 

silence timer of each  node will time  out.  Subsequently, the bus  transmitters of each  node will  be disabled 

to inhibit any transmission of messages.  However, the bus receiver of each  node is still enabled so that it 

can receive commands  for  fault  recovery  later  on.  After a waiting period,  the  bus transmitters of all nodes 

including  the  babbling  node will be disabled and  the  bus will be quiet again. At this time, another timer 
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in the  controlling  master  node will “unmute”  the  node itself and send a  message to re-enable  the  other 

nodes  individually. If a  node  causes  the  bus to fail again while it is  enabled, it will be  identified as the 

failed  node  and will not be  enabled  again. If the root itself is  the  failed  node,  other  backup  nodes will 

detect  the  unmute  timeout  and  promote themselves as  the  controlling  master  according to a pre- 

determined priority. 

4.4 Fault  Protection by Design  Diversity 

By working  together,  the  IEEE  1394 and 12C buses can  isolate  and  recover  from many faults  that 

might  not  be  possible if each  bus  is working alone.  The  failure  modes that can be handled by the 

coorpration of the buses are  as  follows. 

Non-Responsive Failures 

In the  IEEE  1394  bus, when a  node or one of its links  fails  in  the  non-responsive  mode, it will not 

be  able  to  respond to requests  and  messages will not be  able  to  pass through the  node. The existence of 

the  failure can easily be detected by the  bus  timeout,  message  re-transmission,  heartbeat,  or polling. In 

general,  the  failed  node is relatively easy to isolate  because  all  the  nodes  in  the  sub-tree  under it will 

become  non-responsive  to the requests  from  the root node.  Therefore,  the  prime  suspect  is usually the 

non-responsive  node  nearest  to  the  root.  However, to recover  from  the  fault  is not trivial because  the  tree 

topology of the bus has been partitioned in to  two  or three segments by the  failed  node.  The  nodes in 

each  segment will not be able  to  communicate with the  nodes in the  other  segments.  Consequently,  the 

root  node will not be able  to  command  the nodes in the other segments  to  change bus topology. It might 

be  possible  to  devise  distributed  algorithms so that each  node  can try different  link  configurations  to re- 

establish  the  connectivity.  However,  these  algorithms  usually  are  rather  complicate and their 

effectiveness  is difficult to  prove. 

Under  these  circumstances,  the 12C bus can  facilitate  the  communication  among  all the nodes. 

The root node will first  interrogate  the health of the nearest non-responsive  node  (i.e.,  the  prime  suspect) 
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through the 12C bus. If the  node  does not respond  or if its  response  over  the 12C bus  indicates  any internal 

or physical connection  failures, then the root node  can  send 12C messages  to the other nodes  and 

command  them  to reconfigure their links to  bypass the failed node. If the prime  suspect  node  is fault-free, 

then the root can repeat the interrogation (and  recovery  procedure)  on the other  nodes in separate 

segments. 

Similarly, if a node in the 12C bus  becomes non-responsive, the source  node  can interrogate the 

health of the target node  through  the  IEEE  1394  bus,  command  the target node to reset its 12C bus 

interface, and request the target node to retransmit the message. 

IEEE 1394 Bus Physical Layer Babbling 

The  fail-silence  technique  is  effective  to  handle  babbling  failures in the 12C bus  and in the link or 

application layers in the IEEE  1394  bus.  However,  the physical layer of the  IEEE  1394  bus  is rather 

complicate  and  contains  state  machines, it is  possible that a transient fault  would  cause it to babble. A 

particular dangerous type of babbling is the  continuous reset because  any  node in the IEEE  1394  bus is 

able  to issue bus reset. Such failures cannot  be  handled by fail-silence. It is  because if the physical layer 

is silenced, it will not be  able  to pass on  messages  and thus cause  bus partitioning. In this  case,  each  node 

can  check its own physcial layer (e.g., read the physical layer registers). If the physical layer is faulty, the 

processor of the  node  can issue a physical layer reset to correct the problem.  However, if the physical 

layer fault is permanent,  then the node  has  to  inform  the root node via the 12C bus.  Subsequently, the root 

node  can  command  other  nodes via the 12C bus  to reconfigure the bus  topology  to  bypass the failed node. 

Collision of Node  Addresses 

The  address of any  node in the IEEE  1394  or 12C buses  can  be  corrupted by permanent  fault  or 

single event  upset. If the faulty address  coincides  with an existing  node  address,  any  read transaction to 

that address will be corrupted by bus conflict from the two nodes, and  any  write transaction will go to 

both  nodes  and may have unpredictable consequences.  Hence, it is difficult to  disable the fault node by 
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the bus itself alone.  However, with the  redundant IEEE 1394/12C bus  set,  this kind of failures can be 

handled through using  one  bus  to  disable a faulty node on the  other  bus, so that the  erroneously  duplicated 

node address can be eliminated. 

4.5 Fault Protection by System  Level  Redundancy 

The  COTS bus set  is  duplicated  to  provide  system  level of fault  protection. The procedure of 

using the redundant COTS bus  set  to  handle  faults  has  been  explained in Section  4.2. 

To further  enhance  the  effectiveness of the  system  level redundancy, the IEEE 1394 bus in the 

backup  COTS bus set connects  the  nodes in such a way that any branch node in primary bus set is a leaf 

node in the  backup  bus  set  and  vice versa. In other  words,  there  is no node that is a branch  node  for both 

buses.  This  is  shown  in  Figure  2.  Hence, a failed node  can  only partition the  bus in which it is a branch 

node.  For  the  other  bus,  the  failure  only  represents  the loss of a leaf node, but  the  main body of the  tree 

structure  is not affected. 
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Figure 2: Configuration  Diversity of Redundant IEEE 1394 Bus 

4.6 Fault Recovery  under Catastrophic Failure Condition 

Under catastrophic  failure  conditions  such  as bus power  failure, both COTS bus sets may fail 

such that all communications  among  the nodes are  lost. To re-establish the communication,  each  node 

can  execute a distributed  recovery  procedure  that  consists of a  sequence of link enable/disable  activities. 

The enabled  links of all the  nodes in each step of the  procedure  forms a bus configuration. If the  critical 
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nodes of the system  can  communicate with each  other in one of the bus configurations,  further  fault 

recovery  procedures  can  follow.  Unfortunately,  this  approach  requires reasonably tight synchronization 

among  all  the  nodes, which is very difficult to achieve when all bus communications  are  lost. 

Furthermore,  since the cause of the  catastrophic  failure may not  be within the  avionics  system,  there is no 

guarantee  that  the  distributed recovery procedure will succeed.  Therefore,  this  approach is only the  last 

recourse  to  save the spacecraft. 

5 Summary  and  Future  Work 

We have  desribed  our  approach  to  using  COTS in highly reliable  systems.  Our  methodology  calls 

for a multi-level fault protection techniques.  The methodology realizes  that  COTS  are not developed with 

high reliability in mind. Nevertheless, by using multi-level fault  protection,  the  same level of reliability 

as  the traditional full-custom  fault  tolerance approach can be achieved. In fact,  this methodology allows 

more  freedom for design trade-off among  the  fault protection levels.  This can result in less complicate 

designs than the traditional strictly enforced  fault  containment  policy.  Examples of how the methodoloy 

is realized in the X2000 bus  architecture  are  also given. The design  techniques in each levels of fault 

protection will be verified by fault  injection  under various fault  scenarios. The effectiveness of the multi- 

level fault protection methodology will be measured by its  fault  coverage. The distributed  algorithm  to 

handle  catastrophic  failures will also be refined in the near future. 

Reference: 

[ l ]  L. Alkalai  and  A. T.  Tai, “Long-life  deep-space  applications,” ZEEE Computer, vol. 31, pp. 37-38, 

Apr.  1998. 

[2] L.  Alkalai,  “NASA  Center  for  Integrated  Space  Microsystems,” in Proceedings of Advanced Deep 

Space  System Development  Program  Workshop  on Advanced Spacecraji  Technologies, (Pasadena, 

CA),  Jun.  1997. 

19 



[3] L. Alkalai,  “A  roadmap  for  space microelectronics technology  into the New  Millennium,” in 

Proceedings ofthe 35th Space Congress, (Cocoa  Beach, FL), Apr.  1998. 

[4]  L.  Alkalai  and S. N.  Chau, “Description of X2000  Avionics  Program,” in Proceedings of the 3rd 

DARPA Fault-Tolerant Computing  Workshop, (Pasadena,  CA),  Jun.  1998. 

[5]  IEEE  1394, Standard for a High  Performance Serial Bus. Institute of Electrical and Electronic 

Engineers,  Jan. 1995. 

[6]  D.  Anderson, FireWire  System Architecture, ZEEE 1394. PC  System  Architecture Series, MA: 

Addison  Wesley,  1998. 

[7]  D. Paret and C. Fenger, The Z’C Bus: From  Theory  to Practice. John  Wiley,  1997. 

[8]  Philips  Semiconductor, The Z’C-Bus Specijication Version 2.0, Philips  Semiconductor,  Dec.  1998. 

[9] T. Shanley  and D.  Anderson, PC1 System Architecture, Addison  Wesley,  1995. 

[lo] IEEE  P1394A, Standardfor a High  Performance Serial Bus (Supplement), Draft 2.0. Institute of 

Electrical and  Electronic Engineers, Mar.  1998. 

[l I] W. Peterson, “The  VMEbus  Handbook:  Expanded  Third  Edition,”,  VFEA International Trade 

Association, 1993 

[ 121 J.  Marshall,  “Building  Standard  Based COTS Multiprocessor  Computer  Systems  for  Space  Around 

a High  Speed  Serial  Bus  Network,” in the Proceedings of the 17jh Digital Avionics Systems 

Conference, (Bellevue, Washington),  1998. 

[13]  J. Donaldson, “Cassini Orbiter Functional Requirements  Book:  Command  and  Data  Subsystem,” 

JPL  Document  CAS-4-2006, June  28,  1994 

20 


